
MATHEMATICS OF COMPUTATION 
VOLUME 43, NUMBER 168 
OCTOBER 1984, PAGES 593-602 

Pisot Numbers in the Neighborhood 
of a Limit Point. II 

By David W. Boyd* 

Abstract. Let S denote the set of real algebraic integers greater than one, all of whose other 
conjugates lie within the unit circle. In an earlier paper, we introduced the notion of "width" 
of a limit point a of S and showed that, if the width of a is smaller than 1.28 ... then there is 
an algorithm for determining all members of S in a neighborhood of a. Recently, we 
introduced the "derived tree" in order to deal with limit points of greater width. Here, we 
apply these ideas to the study of the limit point a3, the zero of Z4 - 2z3 + Z - 1 outside the 
unit circle. We determine the smallest neighborhood 01 < a3 < 02 of a3 in which all elements 
of S other than a3 satisfy one of the equations z'l(z4 - 2 ? + - 1) ? A(z) = 0, where A(z) 
is one of 3 2 + 1,3-z orZ4-3 1. The endpoints 01 and 02 are elements 
of S of degrees 23 and 42,respectively. 

1. Introduction. As usual, let S denote the set of Pisot (Pisot-Vijayaraghavan) 
numbers. In an earlier paper [1], we gave an algorithm for determining all elements 
of S in a given interval of the real line provided there are only a finite number of 
elements of S in this interval. We also showed how to determine all elements of S in 
the neighborhood of certain limit points. 

We demonstrated the algorithm by finding all points of S in [1, 1.86675] and 
[1.868, 1.932], intervals containing, respectively, three and two limit points of S. The 
reason for the gap (1.86675, 1.868) is the presence of the limit point a3 = 

1.8667603992, the zero of X4 - 2x3 + x - 1 in ixj > 1. In the terminology of [1], 
this limit point has width 1.7548... and hence cannot be dealt with by the methods 
of [1]. 

In the first paper of this series [2], we showed how to extend the algorithm of [1] to 
deal with limit points such as a3. The basic new idea is that of the derived tree. 
Briefly, each Pisot number 0 is associated with a certain set of rational functions 
f = A/Q = uo + u1z + * * with integer coefficients. The set %consists of all suchf 
as 0 varies over S. The sequences of coefficients { Uk } are paths to infinity in a tree 5 
defined by the inequalities of Schur's algorithm. An N-neighborhood of f in %2 

consists of all g in W whose first N + 1 coefficients uO, . . ., UN agree with those of f. 
If f is a limit point of Win the topology defined by these neighborhoods then, at each 
level n of the corresponding path in $1, a subtree $;(ff) branches off. The derived 
tree 7'(f ) describes the asymptotic behavior of 5;(f ) as n -x oo. 
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If Y'(f) is essentially finite (see [2] for this and other undefined terminology), 
there is an effective constant N such that all g in the N-neighborhood of f can be 
completely determined. Under quite general conditions [2, Theorem 8.5], this N- 
neighborhood consists of f(z) = A(z)/Q(z) and the functions 

A(z) ? zn?rQ(Z-) 

Q(z) + zn+rA(Z-l) 

for n > N, where r < max(deg A, deg Q) is a certain integer depending on f. 
Our purpose here is to demonstrate the practicality of the method of [2] by filling 

in the gap (1.86675, 1.868) around a3. There are three limit points of V associated 
with a3, namely 

91,3 = (1 - z + z3)/(1 - 2z + z3 -Z4) 

92,3 = (1- z2 + z3)/(1 - 2z + z3 -Z4) 

93,3 = (1- Z + Z3 - Z4)/(1 - 2z + z3 - z4) 

The first two of these have width 1 and were already treated in [1]. Thus we can 
confine ourselves to g3,3 which we discussed briefly in [2]. 

We will show that the only f in the 22-neighborhood of g3,3 are 

(1.1) f (1 - z + z3 - z4) + zn-3(1 - z + 2z3 - z4) 

(1 - 2z + z3 - z4) ? zn3(1 - Z + Z3 Z4) 

for n > 23. 
Incorporating the results from [1], we find an interval (01, 02) of a3 in which the 

only elements of S are the roots of Zn(Z4 - 2z3 + z - 1) ? A(z), where A(z) is one 

of z3 - z2 + 1, z3 - z + 1 or Z4 - z3 + z - 1. The endpoint 01 = 1.8667463463 is 

an element of S of degree 23 associated with g23, while 02 = 1.8667627119 is an 

element of S of degree 42 associated with g3,3. The minimal polynomials for 01 and 

02 are (writing aozd + alzdl+ + ad 
= aOal - ad), 

(1.2) P1 = 1 -1 -1 -2 1 1 1 -1 -1 0 0 0 -1 0 0 1 -1 -1 -1 1 1 0 -1 -1, 

(1.3) P2= 1-21-1-23-331-24-410-33-211-11 

-11-110-22-311-24-211-32-201-11. 

Here -P1(z)/z23P1(z1) is in Y17(g2,3) while P2(Z)/Z42P2(Z-1) is in 22(g3,3). 

2. The Derived Tree for g3,3 If f is a limit point of V, the derived tree '(f) 

consists of all sequences (c0,... , C) of integers satisfying the inequalities c0 0 0 and 

(2.1) Wk(CO,.. Ck- ) <- Ck < Wk(c0,... .5Ck_J 

where Wk and Wk* are defined by the recurrence relations (4.16) to (4.20) of [2]. 

Because of the symmetry Wk(-cO,. ... -ck1) = -Wk*(CO .. Ck-) we may as- 

sume c0 > 0. Table 1 gives the values of Wk and Wk* for ' = $'(9g3,3) truncated to 

6 decimal places. The integers in the columns headed Mk and Mk* will be defined in 

Section 5. The tree Y' is infinite but we have truncated it at nodes where Wk = Wk* 

to obtain a finite tree. 
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TABLE 1 

k Ck-I Wk Wk* Mk Mk* 

1 1 1.675282 4.045357 10 11 
2 2 3.898594 5.019511 18 10 
3 4 8.051692 8.420621 50 26 
3 5 11.991607 12.068292 15 16 
4 12 27.970103 28 21 19 
5 28 62 62 24 17 
2 3 6.497327 8.834473 21 31 
3 7 15.421767 17 34 1 
4 16 34.989364 36.454884 37 35 
5 35 76.001155 76.043389 98 43 
5 36 77.788620 79.043389 41 43 
6 78 165.900195 166.603279 51 55 
7 166 347.051834 347.394384 82 60 
6 79 168.824854 168.992408 50 90 
4 17 39 39 1 1 
3 8 17.897284 20.043389 27 27 
4 18 40.426227 40.817428 45 42 
4 19 42.458813 44.603279 42 39 
5 43 94.073654 95.692095 66 44 
6 95 204.179028 205.763565 66 61 
7 205 433.131847 434.714303 74 70 
8 434 904.807006 906.374505 65 74 
9 905 1866.786707 1867.463636 77 77 

10 1867 3816.608989 3817.193336 88 84 
11 3817 7744.362025 7744.879502 95 109 
9 906 1869.373630 1870.513744 82 87 

10 1870 3823.956019 3825.085007 88 91 
11 3824 7761.021063 7761.190135 127 93 
11 3825 7763.546869 7763.861294 100 116 
5 44 96.660124 98.394384 46 44 
6 97 208.959271 210.052343 55 44 
7 209 442.830908 442.987753 68 91 
7 210 445.947206 446.146552 47 58 
8 446 932.819400 932.974648 61 85 
6 98 211.542501 212.761293 54 60 
7 212 449.480521 450.623590 66 59 
8 450 941.125009 942.258594 84 63 
9 942 1947.904856 1948.703271 72 82 

10 1948 3990.600850 3990.936074 87 98 
4 20 45.822361 45.992408 34 74 
2 4 9.822045 10 18 23 
3 10 24 24 29 36 
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FIGURE 1 

The derived tree for g3,3 

The tree is traversed in left preorder so that listing Ck- 1 suffices to identify a given 

node (c0,.. . , Ck -). A comparison with Figure 1 reproduced from [2], may be 

helpful. For example, the row of the table giving 

(2.2) C4 = 35, W5 = 76.001155, W* = 76.043389 

refers to the node (1,3,7,16,35) of Y"'. Since there is no integer c5 satisfying (2.1) in 

this case, (1,3,7,16,35) is a terminal node of '. 

The values of Wk* listed without fractional part are exactly integers. The branches 

of Y-' corresponding to Ck = Wk* are simple paths to infinity in 6T'(f) discussed 

more fully in [2, Section 9]. 
The treesY consist of all (cO, . . ,Ck) for which (uo, . u,u_-1, u,, + C,O... ,Un+?k + 

Ck) are in Y. (Here g33 = Uo + u1z + * These trees are characterized by 

inequalities similar to (2.1): 

(2.3) Wn,k(cO,. .C.k,C1) < Ck < WnJk(CO,. ..Ck_1) 

We will use 1+ (g;.) to refer to the sequences satisfying (2.3) and co > 0 (co < 0) 

respectively. 
By Theorem 7.3 of [21, there are effective constants Nk such that, for n > Nk, each 

path (CO, . ., CO) in /n(f ) is also a path in 9Y'(f ). This depends on the convergence 

Wn k- Wk and W,,k Wk* as n oo. 
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As Figure 1 shows, the effective height of ''(9g3,3) iS 10 and hence we need only 
estimate N 1. For this, it suffices to find an N such that, for n > N, and (cO, ... ,ck_1) 
a node in 9' with k - 1 < 10, we have 

(2.4) Wn, k 9 Wn*,k ] n Z C [ Wk Wk* ] n Z. 
Inspection of Table 1 suggests that the most stringent requirement here is that 

76 < WnT5 < 77 for the node (1, 3, 7, 16, 35) of (2.2). This is indeed the case and we 
will show that N5 = N6 = ... Nll = 63. Thus gn-(f ), n > 63 has only one path to 
infinity, the "regular" path corresponding to fn of (1.1). In fact this is true for n > 23 
even though gn; in this case usually contains extraneous nodes which are not in the 
tree '. The tree 9- 2 has two paths to infinity, the regular path and one 
corresponding to (1.3). The other 9; for small n are discussed more fully in Section 6. 

3. Formulae for Estimating Wn,k - Wk. To estimate Nk, we will need estimates for 
Wn,k - Wk and Wn*k - Wk*. We develop estimates in detail only for Wn,k 

- Wk 
since the treatment of Wn*,k - Wk* is almost identical. 

According to [2, (7.5) and (7.6)] we have 

(3.1) Q s2 k = c0+ + Ck-1 Wn,kZk+ (n > k + 1) 

and 

(3.2) Q2 Gd + + Ck1z + Wkzk + 
Q2 Gek~ 

Here i2 = (1 - z + z3)(1 - z2 + z3), Q = 1 - 2z + z3 - Z4, Qn k iS of degree 
k + 3 with Qn,k(O) = 1 and Pn,k(Z) = -zk 3Qn,k(Zl1). Also &(z) = 
G(z)G(z)/G(O), where G is monic, of degree 3, and has all its zeros in IzI > 1, while 
G(z) = z3G(z-1). The polynomials dk, ek satisfy ek(O) = 1, deg ek = k and dk = 

-z kek(zl1) 

If cmr1 # Wm-, or Wm*-, for m < k then these conditions and (3.2) characterize 
dk and ek. If cm-, = Wmi- or W,*1 for some m < k then we define ek(z) = 

(1 + Z)k-mem(z). In this case co,. . ., Cm_ 1 uniquely determine Cm, Cm+ 1 .... Similar 
remarks apply to Pn,k and Qn,k if n > k + 1. 

LEMMA 3.1. With the above notation, if n > k + 1, then 

(3.3) Pn,kGek - Qn,kGdk = ZkHnk 

where Hn k is a polynomial of degree at most 2r which satisfies Z2rHn k(Z 1) = -Hn,k(Z) 
and 

(3.4) Wn,k - Wk = Hn,k(0). 

Proof. The left member of (3.3) is a polynomial R of degree at most 2k + 2r 
which satisfies 
(3.5) z2k+2rR (Z-l) = -R(z). 

By (3.1) and (3.2), it follows that 

(3.6) S2R/( Qn,kGek) = (Wn,k Wk)Z + ..., 

so R has a zero of order k at z = 0. Thus R(z) = zkHn,k(Z) where deg Hn,k < k + 2r. 
But by (3.5) the leading k coefficients of r also vanish-so, in fact, deg Hnfk < 2r. The 
remaining properties of Hn,k follow from (3.5) and (3.6). 

For our example, r = 3 so that 

(3.7) Hn k(Z) = a + bz + cz2 - CZ4 - bzA - az6, 
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where a = Wn k - Wk. Let ai, (i = 1,2, 3), be the zeros of G so a, is the real root of 
1-Z + Z3 = 0 and a2, a3 the complex roots of 1 _ z2 + z3. Numerically, 

a = -1.3247179572, a2= .8774388331 + i(.7448617666). 

From (3.3), we have 

(3.8) Hn k(al) = aTkPf k(p)"(a)ek(l) 
(i = 1,2,3). 

From (3.4) we have, for n > k + 1, 
3 

(3.9) Wn,k - Wk = E hlHn,k(ai), 
i=l 

where hI, h2 and h3 are obtained by solving the following 3 x 3 linear system for a: 

(3.10) a(1 - a6) + b(ai - a 5) + c(aol- ai) = H- k(a4). 

Numerically, 

(3.11) hl = .057477943, jh2l = jh3l = .374123681. 

The quantities a'G(ai)ek(ai) can be computed for each node of the derived tree. 
The quantities Pn,k(a,) tend to zero geometrically. So Formulae (3.8) and (3.9) 
provide a means of estimating Wn,k - Wk. It is useful, though, to further manipulate 
(3.8). 

LEMMA 3.2. With the above notation, 

(3.12) Pn,kQn,k+1 - Qn,kpn,k+l = Z k(1 - Z)(Wn,k - Ck)S2. 

Proof. Combine the definitions [2, (5.6) and (5.10)] of P,,,k and Qn,k with the 
following formula from [3, p. 82], 

Dn+lEn-DnEn+i = (Un - Wn)Zn(l - z). 

COROLLARY 3.3. Let f = g3,3. Then, for all n, k and i = 1, 2,3, 

(3.13) 
Pn,k(ai) 

= al Q-n,k(al) 

Proof. By (3.12), the ratio Pn,k(a,l)/Qnk(al) is independent of k. When k = 0, 

Pn,k = Pn and [2, (5.9)] gives 

(3.14) zn+rP(z)A(z-l) - zrPn(Z-l)Q(Z) = En(Z)Q(Z). 

Thus 

(3.15) Pn(aj)/Pn(aT1) = a-nQ(aj)/A(a-1). 

Forf = g3,3 we readily verify that 

(3.16) Q(Z) + Z2A(Z-1) = _Z-20(Z), 

and hence Q(a,)/A(ay ) = -a,. Since QnO(Z) = -z3P(z-1), we can now derive 
(3.13) for k = 0 and hence for all k. 

The formula (3.8) can thus be written in the more useful form: 

(3.17) Hn k(ai) = a-n-kl-(l)ek(al)Qek(l) 

It only remains to estimate Qn k(al), to which we now turn. 

4. Estimates for the Auxiliary Polynomials. Throughout this section, Pn k etc. refer 
to the auxiliary polynomials for f = g3,3. The techniques apply to any f for which S 
has no multiple zeros. We regard polynomials of degree d with real coefficients as 
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vectors in Rd?l and measure distance between two such polynomials by the 
1??-norm, i.e., llaoxd+ * * * + a Ij = max{ja,1: 1 < i < d}. Recall that Pn,0 = Pn and 
Qn,o= Qn 

LEMMA4.1. For n > 50, 

JlPn - GlI = JlQn - l C < .007, 

where C < 7.871 and 3 = 1I 21 < .868837. 

Proof. Temporarily let 

(4.1) G(z) = (z - a1)(z - a2)(Z-a3) = a + bz + cz2 + Z3 

and 

(4.2) Pn(z) = an + bnZ + C,Z2 + Z3. 

From (3.13) we have 

(4.3) Pn(a1) = -i2 np(ai) 

Thus 

(4.4) a + ba + ca2 = -a3 

and 

(4.5) an(' + a2-n) + bn(a, + al-n) + cn(a 2 + a. n) = - a3 1-n 

Define the 3 X 3 matrices V and Un to have rows (1, a, a2) and (a2-n, a' -, a ) 
respectively, and define the column vectors pn, g and hn by pn = (an, bn, Cn)tr, 
g = (a, b, C)tr and h = (-aj- - , -a-, 1-n -l-n )tr. Then (4.4) and (4.5) combine 
into 

(4.6) (V- Un)pn= Vg+hn, 
or 

(4.7) Pn- g = (I - V-1Un)1V-1(Ung + hn). 

Using the l?-norm, we calculate 

1IV-1l = 1.125642247, 
IIUnil = (3.475681885)S , n > 2, 

llhnll = 8l+n 

llgll = a2 = 1.754877666, 

so that (1 - IV VLUnY1I 1 1.00347425 for n > 50. Hence (4.7) gives 

(4.8) lIpI -gll g< (1 - lIV-1UnIIl)IIV-1l(IlUnII llgll + llhnll), 

which proves the lemma. 

LEMMA 4.2. For n > 51, 

(4.9) lQn,k( ai) I C 
where 

C1 = 4.302463189, C2 = C3 = 1.204779188, 
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and where piis the larger root ofX2 = 11 + ailx + 41ajl,so that 

P1 = 2.470005456, P2 = P3 = 3.381346122. 

Proof. From [2, (5.19)], we deduce that 

(4.10) Qn,k+l= (1 + z)Qn,k 
- yn,kZQn,k-1, 

wherey,k = (ck - Wn,k)/(Ck-1 - Wnk-). From [2, (5.21)], we have 

(4.11) Wn*k - Wn, k = 4(Wn*k-I - Ck-l)(CkI - Wn,kl)/(Wn,k-1 
- 

Wn,k-l). 

Combining (2.3) and (4.11) yields 0 < Yn,k k 4, provided Ckl 7# Wn,k-l (If Ckl = 

Wn,k-I then Qn,m for m > k + 1 is not uniquely defined, but if we simply let 
Qn,m = (1 + Z)m-kQnk in this case, then (4.10) holds with 0 < Yn<k 4.) 

The initial conditions in (4.10) are 

(4.12) Qn,o= Qn and Qn,-1 = Qn-l 

If we demonstrate (4.9) for k = 0,1 it will follow by induction for k > 2 from 
(4.10) and IYn kI < 4. By Lemma 4.1, IIQn - Gil < .007 for n > 50, so 

lQn(al)l <- 1(a,)l +(.007)(jail + Ji12 + Jai13) 

Since 

G(al) = -4.264632994 and 16(a2)1 = 1.176776497, 

we do have (4.9) for k = 0 and i = 1,2,3. 
To estimate Qn, 1(ai), we use (4.10) and (4.12) where 

yn,o = (CO + Un - Wn)/(Un-1 Wn-1) 

and co = +1. From Lemma 4.1 

l(u, - wn) -wl -<- IlPn - GI <, .007 if n -> 50. 

Hence LJyn,o - yol < .010291843, for n > 51, where yo = (co + w)/w = 1.569840291 
(if co = 1) or y= .430159709 (if co = -1). 

Now write 

Qn= (1 + z)G - mOz +(1 + z)(Qn - G) - ynOZ(Qn-I 1 ) 

and use the estimates for I yo- yol and IIQ, - Gil given above to verify (4.9) for 
k = 1, n > 51. This completes the proof of the lemma. 

Remark. The estimate (4.9) is rather unrealistic for large k since we know [2, 
Lemma 7.1] that Qn k -dGek as n -x cc at interior nodes of the derived tree (nodes 
where Wkl < C,_- < WI*- ). The estimate can be improved by recursively estimat- 
ing the differences Yn k - Yk and using the known values of Yk, rather than resorting 
to the estimate 0 < Yn,k < 4. This turns out to be unnecessary for our purposes. 

5. Estimates of Nk. Combining (3.9), (3.11), (3.17) and (4.9), at each node of the 
derived tree we have 

(5.1) lWn,k - Wkl -< LAk,ilek(a,l Ji 
i=l 

where Akl = IhICIIail--kpk, so that 

(5.2) Ak.1 = (.796116505)(1.864551955), 
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(5.3) Ak,2 = Ak,3 = (.460845058)(2.937838492)k. 

Tracing through the analysis, we find that Lemmas 4.1 and 4.2 are valid for P,1*k 

and hence that 
3 

(5.4) IW:k - W,| s E Ak,xje*(aj)I IaV 
I =1 

Let Uk be the largest integer strictly smaller than Wk and Vk be the smallest 
integer strictly larger than Wk*, so 

(5.5) Wk = Uk + k ? < Sk 1 

(5.6) Wk=V < - < 1. 

For each node in the derived tree, let mk = mk(cO,... Ck-1) and m* be such that 
m ? mk implies lWn,k - Wkl < Sk and m > m* implies IW4*k - Wk1 < 8. IfMl 

(Mk*) are such that the right members of (5.1) and (5.4) are less than 5k (8) for 
m > Mk (Mk), then mk < max(Mk, 51) and mk < max(Mk, 51). The quantities Mk 

and Mk* are given in Table 1. 
Suppose (CO,.. . ,Ckl) is a path in Y' and in 5;. Then, for n > max(mk, mk), 

(2.4) holds. As shown in [2, Theorem 8.4(b)], no path in 5n can follow any of the 
paths to infinity in ?' to a height > 4 unless it coincides with one of 
?(1,3,7,17,39,...). Thus if ?' is truncated at height 4 on these paths and 
N = max(mk, m*) over all nodes in the truncated $7' then n > N implies that ; is a 
subtree of ~Y'. 

The bounds Mk, Mk* given in Table 1 together with values for the nodes where 
Ck = Wk* and k < 4 give N < 127. By computing t; for n < 126 as described in the 
next section, we obtain exact values for mk and mk. For example, 

m5 (1,3,7,16,35) = 63 and ml,(1,3,...,1870,3824) = 47. 

If we use Qn,k(ai) =G(al)ek(al) rather than (4.9) we obtain m5(1,... ,35) = 66 and 

mll(l,...,3824) 48, so we see that it is (4.9) that leads to the more pessimistic 
values 98 and 127 given in Table 1 for these two quantities. 

For the sake of interest, 

W625 (-1, -3, -7, -16, -35) = 75.999171, 

and 

W46,1(l13,... 3 ,1870, 3824) = 7760.998730, 

correct to 6 decimal places. 

6. The Trees ;n(g3,3). By the calculations of the previous section, if n > 127, each 
tree gn- +(g3,3) contains only the single path to infinity ? (1, 3, 7, 17,...) correspond- 
ing to fn of (1.1). It thus remains to examine the trees $7 ? for n < 127 to determine 
the finite number of exceptional elements of Win the neighborhood of g3,3. 

In the following discussion of the sizes of Tn ?, we have truncated these trees at the 
nodes where Ck = Wn,k or Wn*k. Since the expansion of g3,3 begins 

933 = 191,2,4,7, 13, 24, 45,... 

it is clear that 194I 1 = oX since it contains a path corresponding to 

(1 - z)/(l - 2z) = 1,1,2,4,8,... 

which is in the second derived set of W. 
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Similarly, IYs l = oo since the limit point ,B3 = 1.927 ... has an expansion 

(1- z4)/(1 _ z - Z2 - z3- z4) = 1,1,2,4,7, 14,.... 

All other Y; + with n > 4 are finite. Although both of 6 ? are small, Y7- is quite 
large, containing 1671 nodes and 102 paths corresponding to elements of W. These 
expansions begin 

1, 1,2,4, 7, 13, 24, 44, ... 
and the corresponding Pisot numbers lie in a rather small neighborhood of 1B2= 
1.839... rather than of a3 = 1.866... and are among those discussed at the end of 
Section 3 of [1]. 

For n >? 23, there are no paths to infinity other than those corresponding to (1.1). 
For n = 22, we obtain P2 of (1.2) corresponding to a path (1, 3, 8,... ,3682615) in 

+22- 
In spite of the restriction n > k + 1, in (3.1), the trees $7 + can be computed 

correctly for all n by using (3.1). That is, Pnk and Qnk are computed from (4.10) and 
Wn, k from (3.1), and similarly with pn*,k Qn,k. If k + 1 n then the values for Ck, 

W'Y2k and WJV*k are incorrect, but the quantities Ck - WnY k and WJV*k - Ck are correct, 
so the recurrence relation (4.10) gives the correct Pnk and Qn k. 

The starting values Pn and P,* are computed using the recurrence relations [2, 
(5.18)]. This was done in integer arithmetic and, for comparison, using double 
precision floating-point arithmetic. The floating-point calculation proves to be 
accurate to over 13 decimal places indicating the exceptional stability of the 
recurrence relation [2, (5.18)]. 

For n < 65, the trees T7 + were computed using integer arithmetic as in [1]. For 
n > 65, the computations were done in the double precision floating-point arith- 
metic. Since the trees in this case are of height at most 11, it is easy to see that the 
rounding error gives values of Wnk and W*,k correct to at least 5 decimal places even 
under the pessimistic (and false) assumption that Yn,k = 4 for all n, k. 

The integer calculations for n < 65 make the detection of Pn k and pn*k with 
integer coefficients easy. These correspond to D, k and *+k whose roots are Pisot 
numbers according to the formulae [2, (5.8) and (5.13)]. A comparison with the 
results of [1] revealed that the only Pisot number in the range [1, 1.932] actually 
missed in [1] was 02, the root of P2 of (1. 3). 

The computations of this section were performed on an AMDAHL 470/V8. The 
numbers in Table 1 were computed on an Apple II+ and verified by a computation 
on the AMDAHL 470/V8. In fact, all of the computations described here are well 
within the capabilities of a microcomputer except for the computation of some of the 
larger $n- such as - 
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